
TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 1

“TIC” Technical Description

Project Description

The TIC software project was an experiment in using DSP methods to demodulate
WWV time signals and synthesize various clock sounds using the TAPR/AMSAT DSP-
93 platform.

Some of the TIC implementation features:

• AGC function on input samples.
• 1000Hz and 100Hz FIR Bandpass filters used to recover WWV time signals.
• Bit by bit data integration method extracts time information from the WWV signal.
• ASCII time string output in 12 or 24 hour format from DSP-93 UART.
• Hourly gongs or cuckoo’s and bells at 15, 30, and 45 minutes past hour.
• Sound effects produced using FM synthesis methods.
• Automatic Daylight savings time adjustment except for GMT output.
• Assembly options for various time zones, sound options, radio port, etc.
• Automatic internal clock compensation for stand alone timekeeping.

Radio Station WWV is a shortwave radio station operated by the National Institute of
Standards and Technology and broadcasts time data as well as various voice
announcements on 2.5, 5, 10, 15, and 20 MHz. out of Ft. Collins, Colorado. For more
details of this station you can check out the web site,
http://www.boulder.nist.gov/timefreq/pubs/sp432/s_wwv.htm>

Another station WWVH is located in Kauai Hawaii but uses slightly different tones.
Since it is not received clearly here on the east coast, this project was developed to
only decode WWV.

The WWV Signal

Various tone sequences are broadcast by WWV. The start of each hour is identified
with a .8 second burst of 1500Hz tone. The start of each minute is identified with a .8
second burst of 1000Hz tone. The start of each second is identified with 5 cycles of
1000Hz tone. (Except for the 29th and 59th second) Time data is sent using pulses of
100Hz tones at a data rate of 1 Hz in BCD format.

The WWV signal uses double sideband AM where four types of information is
modulated onto the carrier. Voice information is modulated at 75%, the steady tones
are at 50%, the second’s “tick” sound is 100%, and the BCD time data is 25%. For this
project only the 1000Hz seconds/minute identifier tones and the 100Hz BCD time data
are utilized.

Hardware Platform

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 2

The DSP-93 platform consists of a 40 MHz Texas Instruments TMS320C25 16 bit DSP
chip, surrounded by 32K words of program memory and 32K words of data RAM. An
analog interface board contains a TI TLC32044 14 bit A/D, D/A converter, a
asynchronous UART chip, and various I/O ports for radio control and LED display
control. A software controllable gain block is provided for adjusting the receiver input
level to the A/D converter. A monitor EPROM is used to provide a downloader function
as well as storing built in modem software and test applications. Programs can be
downloaded into the DSP-93 using utility programs that run on a PC.

The following diagram shows the basic setup for using the DSP-93 to receive WWV
signals. The DSP-93 connects to the radio using one of the radio ports. A little more
information is given in the file TIC1USR.PDF concerning setup of the cuckoo clock.

Terminal
Program

WWV
Receiver

DSP-93

Speaker

RS232
Link

RS232
Link

Software Design Method

The software for the TIC1 clock was designed in a modular fashion using “C” language
blocks to describe each function. Once the code blocks were defined, then the C320-
25 assembly code was hand assembled using the “C” code blocks as a reference. This
may seem cumbersome but designing in assembly language can get very complicated
and confusing in a hurry even with generous comments. By designing the code in a
higher level language, one doesn’t get bogged down in implementation details until the
design is ironed out. This may take a little longer to get to the debug stage, but
reduces the number of bugs once you get there, especially as the program gets more
complicated.

The software source was also broken into several parts mainly to ease in editing. This
sort of implements a “poor man’s” linking assembler in that one can edit and debug

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 3

using just the file associated with a general task instead of having to search through
one large cumbersome source file. When assembling of course, all the files have to be
re-assembled.
Data queues(FIFO, Circular, or “rubber band” buffer) are used on the A/D and D/A
channel to reduce the timing constrains on the software and allow even distribution of
processing time.

The only time critical operation is the actual A/D and D/A sampling operation which is
performed by the TLC32044 CODEC chip in conjunction with the DSP hardware. Since
the data is taken from or put into the data sample queues at precise time intervals, the
rest of the software is not constrained to operate on the data in real time. This allows
the software to perform periodic operations longer than the sample time interval as long
as the average processing time does not exceed the sample time interval.

Another software method used was the use of indirect function calls to implement state
machines which are of use at various places in the code. Basically the address of the
function to call is placed in a RAM variable. An indirect call using that RAM variable
results in execution of the specified function. Within that function, a “NEXT STATE”
can be specified by simply loading the RAM variable with the address of the next state
function. In this manner, complicated state machines can be implemented fairly easily.
The software is broken into six files for easier manipulation:
• TICMAIN.ASM This is the main entry file and is the one that is specified for

assembling as it has all the include references for the auxiliary files. It contains
constant definitions, variable allocations, hardware and software initialization,
interrupt service routines, and low level bit twiddling functions. The main code
service loop also resides here which calls all the other modules in a round robin
fashion to service all the various tasks of the modem.

• TICDATA.TBL This file contains various constant data tables used throughout the
program. A SIN table, lookup tables, FIR coefficients, sound tables, state tables,
etc. are contained here.

• TICINPUT.ASM This file contains all the routines that service the A/D input
samples as they arrive and demodulate it.

• TICTIME.ASM This file contains routines that decode time information from the
WWV signal.

• TICSOUND.ASM This file contains routines that create the sounds used in the
cuckoo clock.

• TICUART.ASM This file contains routines that send status and time ASCII strings
out the UART port.

Software Descriptions

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 4

The software begins executing after being downloaded by first initializing the hardware
resources on the DSP-93. The TLC32044 AIO chip is initialized to run at a sample rate
of 10000 sample per second. The 16C550 UART chip is initialized to 19200 bps. This
is the default serial output rate. The onboard timer of the TMS320C25 chip is set to
interrupt every 5 milliseconds. This is used as a timer for some of the initialization
routines, and synthesized time generation. Several initialization routines are called to
initialize various variables used by each module. After initialization, the interrupts are
enabled, and the main service loop is entered in which all four software modules are
called in a loop continuously.

A/D
 Input

Input
Sample

Que

TICINPUT

TICTIME

TICMAIN

D/A
 Output

Output
Sample

Que

TICSOUND

TICUART

UART
 Output

First the AIO interrupt service routine will be described. It’s function is to send a new
sample from the Sample_Que out the D/A PORT and store a new A/D sample into the
Sample_Que. Since the A/D and D/A are run at the same sample rate, only one
interrupt service routine is used for both. Also since one word is removed and one word
is placed in the Sample_Que at every sample time, only 3 pointers are need to maintain
the Sample_Que.

void RxIntService(){
 Save_Context();
 DXR = Sample_Que[AR6]; // write D/A from Sample_Que
 Sample_Que[AR6++] = DRR; // read A/D into Sample_Que

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 5

 if(AR6>Sample_Que+SAMPQUESIZE-1) // deal with wrap around
 AR6 = Sample_Que;
 Restore_Context();
}

Three Auxiliary registers(AR6,AR5,AR4) are used as pointers to the Sample_Que. AR3
is used as a software stack pointer to save and restore processor context since the
320C25 doesn’t save anything except the return address during interrupts.

A/D data can be removed from the Sample_Que as long as AR5 != AR6.
D/A data can be placed in the Sample_Que as long as AR4 != AR5.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 6

TICINPUT.ASM Module

First the samples are processed by the AGC block to try and keep the amplitude
constant.

Clipping
Detector

AGC’d
DATA
Out

DATA
Input +

Sign
Changed??

XOR

LP
IIR Filter

PEAK
Value

abs()

1/x

-
-

A/D samples are pulled out of the Sample_Que and passed through a clipping detector.
This block just sees if any samples are above some peak threshold and flashes front
panel LED7. This is useful in setting the maximum receive audio level.

The AGC works by monitoring the incoming sample stream and calculating the slope of
the incoming signal by subtracting the present sample from the previous sample. If the
sign of this difference(slope) changes, then a peak in the incoming wave form has
occurred. The absolute value of the sample is then stored as the signal peak level and
low pass filtered. The input is then multiplied by the inverse of the low passed peak
signal to obtain an AGC’d signal for the remaining signal processing.

LED6 is turned off if the input signal is below the level where the AGC can operate.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 7

The Following figure shows the timing of the WWV 1000Hz tone. An 800 mSec burst
signifies the beginning of a minute. A 5 mSec burst signifies the beginning of each
second. (The 29th and 59th seconds are omitted as well as double bursts which can
occur to signify UT1 time correction information.)

The next step is to extract the 1000Hz and 100 Hz AM signals. This is done as shown
by the following diagram.

2 5 2
AGC’d
Input

Sample

ABS()s
BP1

1000Hz
BP FIR Filter

AA1
1200Hz

LP FIR Filter

AA2
125Hz

LP FIR Filter

AA1
120Hz

LP FIR Filter

LP1
LP FIR Filter

1000Hz
Detector Output
"Level_1000"

(delayed
8.65mSec)

BP1
100Hz

BP FIR Filter
ABS()s

LP1
LP FIR Filter

100Hz
Detector Output

(delayed
94.05mSec)

10KHz
Sample Rate

5KHz
Sample Rate

1KHz
Sample Rate

500Hz
Sample Rate

LP IIR Filter

1000Hz
Average Level

Detector Output
"TIC_Ave"

Decimate Decimate DecimateN=25 N=63

N=63

N=11

N=25

N=63 N=11

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 8

The signal’s sample rate is reduced down to 5000Hz and then band pass filtered to
extract the 1000Hz signal. It’s then AM detected with an absolute value function then
low pass filtered to extract the final demodulated 1000Hz signal.

The 100Hz signal is demodulated in the same manner except that it’s sample rate is
decimated down to 500Hz before being band pass filtered.
The strange choice of filtering is used to be able to share delay lines and coefficients
with other filter blocks. The TMS320C25 is limited in its internal memory for storing lots
of filter tables. The FIR filters were designed using a program called PC-DSP from
DSP Solutions. The Parks-McClellan algorithm was used in choosing the filters. The
filter response curves for the filters are as follows:

AA1 FIR LP filter

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 9

The final low pass filters are actually more like notch filters to remove the fundamental
and second harmonic created from the absolute value function.

The 1000Hz output signal is further low pass filtered to obtain a long term average used
as a background noise level indicator. A one pole IIR filter is used to basically keep a
long term average over 512 samples or about 100mSeconds. The following is a
Mathcad output of the IIR filter impulse and step response.

IIR Low Pass Filter

N 2048 n ..0 N 1 ORIGIN 1 xn 0 yn 0 x0 1 K 512

yn

.()K 1 yn 1

K
.1

K
xn

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 10

0 500 1000 1500 2000

0.001yn

n
** Impulse Response ***

0 409.4 818.8 1228.2 1637.6 2047
0.002

0.198

0.394

0.59

0.786

0.982

y

n
*** Unit Step Response ***

The last function this module performs is to find and synchronize to the 1000Hz
seconds “tick” signal from WWV. If the WWV signal is just being acquired, a routine
“Search_1000” is dispatched to initially find the seconds time position. This is done by
creating a one second timer that counts from 5000 to zero at a 5000Hz rate. The
1000Hz signal “Level_1000” is compared to the average signal level “TIC_ave” and if it
is 4 times the average, a one second one-shot timer is started and the one second
timer is set to 2570. At the end of this one second interval, the signal is again
compared to the average signal level and if the signal is again 4 times the backgound
average, a variable “TIC_quality” is incremented. This process continues until the
“TIC_quality” exceeds a threshold and then another routine “Lock_1000” is dispatched
to maintain phase lock with the WWV one second tic signal.

This Lock_1000 routine samples the “Level_1000” signal for 64 early samples before
and 64 late samples after the 2500 count of the seconds timer. The software then
adjusts the timer value so that the sum of the 64 early samples is equal to the 64 late
samples. The result is that the seconds tic pulse is centered in time around the 2500
time counter point. The total energy under the late and early regions is also compared
with the background level to determine if a valid signal is present.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 11

A secondary operation falls out of this method by keeping track of how many times the
software has to correct for an early pulse and a late pulse. This information can be
used to determine how much and what direction to adjust the DSP-93 internal oscillator.
The DSP-93 oscillator is a 100ppm unit and by adjusting the internal clock, one can
increase this accuracy by an order of magnitude or better. This allows the cuckoo clock
to maintain accurate time after the WWV signal has been disconnected.

TICTIME.ASM Module

This is the primary module for extracting time data from the WWV signal stream. It
operates at a 200Hz sample rate (5 mSec). A timer “Sec_pos” provides positional
status within each 1 second interval. It is adjusted by the Lock_1000 routine to
accurately time all the sampling activities.

Before any data sampling can begin, it is necessary to determine the beginning of the
minute. This is done by the routine “Service_1000Hz” which finds the 800 mSec burst
of 1000Hz tone and sets the seconds counter “Sec_count” to zero. This is then
incremented every second up to 59 to keep track of the proper second within each
minute.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 12

WWV time data is sent during each minute interval at a 1bps rate using the following
timing scheme within each 1 second interval.

The routine “Service_100Hz” samples the output of the 100Hz filter “Level_100” and by
taking 200 samples over a one second interval integrates the noise and signal values to
come up with a bit value based on the duration and signal to noise ratio of the 100Hz
signal. The bit value takes on three possible values, +1, -1, and zero indicating a “1”,
“0”, and invalid data, respectively.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 13

The data bit definitions within each minute is shown in the following list. Numeric data
is sent as BCD data. Only the minutes, hour, and Daylight savings time indicator are
decoded for the cuckoo clock.

Second Data Bit Second Data Bit Second Data Bit
0 20 Hrs 1 40 Days 100
1 Leap

second
21 Hrs 2 41 Days 200

2 DST2 22 Hrs 4 42
3 23 Hrs 8 43
4 Year 1 24 44
5 Year 2 25 Hrs 10 45
6 Year 4 26 Hrs 20 46
7 Year 8 27 47
8 28 48
9 P1 29 P3 49 P5

10 Min 1 30 Days 1 50 DUT+-
11 Min 2 31 Days 2 51 Year 10
12 Min 4 32 Days 4 52 Year 20
13 Min 8 33 Days 8 53 Year 40
14 34 54 Year 80
15 Min 10 35 Days 10 55 DST1
16 Min 20 36 Days 20 56 0.1 DUT
17 Min 40 37 Days 40 57 0.2 DUT
18 38 Days 80 58 0.4 DUT
19 P2 39 P4 59 P0

The basic data gathering scheme is to integrate the bit values for each data field until
the total bit energy exceeds some threshold and then declare it a one or zero. By
integrating each data bit field over several minutes, eventually all the data bits will be
determined.
The catch to this method is that every minute the data changes as the time information
advances and so several bits may reverse polarity messing up the integration sum
values. The brute force method would be to create an array of all possible time values
and integrate each data bit into all the possible fields and select the possible time value
with the largest total integrated bit energy. For this clock which ignores day and year
data, it would take 24x60x2 = 2880 time values times 14 data bits or 40,320 words to
hold each bit integration value.
This is a bit much so a compromise solution was to only look at all ten possible minute
unit’s digits and then once the unit’s digit is found, go and get the 10’s digit and then the
hours digits. This method takes longer but saves on memory and processing time.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 14

A jump table is used to call the various routines depending on the particular second of
the minute is current. The table is indexed by the Sec_count (0-59) and a call to each
routine listed in the table is made.
DATASERVICE: ;seconds data bit service vectors
 .word Nop ;0
 .word Nop ;1
 .word Nop ;2 DST2
 .word Nop ;3 Leap sec warning
 .word Nop ;4 Year 1
 .word Nop ;5 Year 2
 .word Nop ;6 Year 4
 .word Nop ;7 Year 8
 .word Nop ;8
 .word Inc_Min_Rows ;9 P1
 .word Srv_M1 ;10 Min 1
 .word Srv_M2 ;11 Min 2
 .word Srv_M4 ;12 Min 4
 .word Srv_M8 ;13 Min 8
 .word Inc_Min10 ;14
 .word Srv_M10 ;15 Min 10
 .word Srv_M20 ;16 Min 20
 .word Srv_M40 ;17 Min 40
 .word Chk_Min ;18
 .word Inc_Hrs ;19 P2
 .word Srv_H1 ;20 Hrs 1
 .word Srv_H2 ;21 Hrs 2
 .word Srv_H4 ;22 Hrs 4
 .word Srv_H8 ;23 Hrs 8
 .word Nop ;24
 .word Srv_H10 ;25 Hrs 10
 .word Srv_H20 ;26 Hrs 20
 .word Chk_Hrs ;27
 .word Nop ;28
 .word Nop ;29 P3
 .word Nop ;30 Days 1
 .word Nop ;31 Days 2
 .word Nop ;32 Days 4
 .word Nop ;33 Days 8
 .word Nop ;34
 .word Nop ;35 Days 10
 .word Nop ;36 Days 20
 .word Nop ;37 Days 40
 .word Nop ;38 Days 80
 .word Nop ;39 P4
 .word Nop ;40 Days 100
 .word Nop ;41 Days 200
 .word Nop ;42
 .word Nop ;43
 .word Nop ;44
 .word Calc_status ;45
 .word Nop ;46
 .word Nop ;47
 .word Calc_clk_error ;48
 .word Nop ;49 P5
 .word Nop ;50 DUT+-
 .word Nop ;51 Year 10
 .word Nop ;52 Year 20
 .word Nop ;53 Year 40
 .word Nop ;54 Year 80
 .word Srv_DST ;55 DST1
 .word Nop ;56 0.1 DUT
 .word Nop ;57 0.2 DUT
 .word Nop ;58 0.4 DUT
 .word Nop ;59 P6
;

The routines “Integrate_Array()” and “Integrate_bit()” perform the tasks of placing new
bit data in the data arrays. “Inc_Min_Rows()” is a routine that increments the BCD data
bits in all ten arrays for the units digit. This is done every minute to maintain the correct
time phase of each of the ten possible minute values. “Calc_bits()” is a function to

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 15

calculate the BCD digit value from the bit data and also determine the total bit energy a
given data array.

The format for the bit data arrays is:
 0 1 2 3 4 5 6 n+2
 --
 | value | Bit0 | Bit1 | Bit2 | Bit3 | Bit4 | Bitn | energy sum |
 --

The routines “Chk_Min()” and “Chk_Hrs()” monitor the progress of the time data
acquisition and set the main time variables accordingly.

The routine “Service_Sec()” is called every second to perform the overall time of day
time keeping by incrementing the time of day variables “Sec_count”, “Min_count”, and
“Hr_count” .

The routine “Calc_clk_error()” is called every minute and calculates the internal clock
error and determines how much to compensate the “Sec_pos” timer.

The front panel LED’s are used to show the progress of time acquisition. After time
has been determined, the LED’s sequentially flash in a pendulum fashion. Timing of
the LED’s is done with a lookup table that is called from the 5 mSec service loop.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 16

TICSOUND.ASM Module

This module is responsible for creating the sound affects for the cuckoo clock. The
method used is called FM Synthesis.

Essentially, FM is fast vibrato. When a vibrato rate moves into the audio range, and its
depth is well in excess of that generally used in vibrato, the effect - instead of being one
of fast up and down repeated glissandi, sliding above and below a base frequency - is
to distort the waveform of the modulated oscillator ("carrier"), producing sidebands
above and below the base frequency. Sidebands will either form harmonic or
inharmonic relationships with the base (ie. the carrier) frequency. The positioning of
sidebands is a function of the carrier: modulator ratio, and their number and amplitude
vary in proportion to the amplitude of the modulator (ie. the depth of modulation). While
the precise relationship between the sidebands, and the carrier:modulator ratio and the
amplitude of the modulator (modulation index), can be determined by the use of Bessel
functions, in general, it is reasonable to say that the number of sidebands produced on
either side of the carrier will be equal to the modulation index plus 2. Further, the
position (ie. frequency) of the sidebands will follow the basic rule:

carrier-frequency ± (k * modulator-frequency)

where k is the order of the sideband and generally ranges from 0 to the modulation
index + 2

The formula for FM,

 cos(wct + B sin wmt)

where the "m" stands for "modulator" and the B is the "modulation index".
With a bunch of boring math, the expression can be expanded into it’s spectrum of
harmonics:
cos(wct + B sin wmt) =
 J0(B) cos wct
 - J1(B)[cos(wc - wm)t - cos(wc + wm)t]
 + J2(B)[cos(wc - 2 wm)t + cos(wc + 2 wm)t]
 - J3(B)[cos(wc - 3 wm)t - cos(wc + 3 wm)t] + ...

Where the J's refer to the Bessel functions. The spectrum is made up of a "carrier" at
wc and symmetrically placed sidebands separated by wm. The amplitudes follow the
Bessel functions.

By changing the amplitude envelope and modulation index over time, various sound
affects can be generated.
More details can be found at the following URL:
<http://ccrma-www.stanford.edu/CCRMA/Software/clm/compmus/clm-tutorials/fm.html>
The cuckoo clock’s implementation uses a table containing the amplitude and
modulation index envelope to generate each sound. In order to save space, the slope

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 17

of the envelope is stored rather than the absolute value making a linear piece wise
approximation of a sound envelope very compact. Three independent FM generators
are needed in order to create a tubular bell(gong) sound. The three generators are
summed together and then sent to the D/A. The sound generator table format is as
follows:

;*********************** SOUND GENERATOR TABLES **************************&
; FM generator initial data structure entry format:
; NCO fequency rate increment = SampleFreq/65536 = 10000/65536 = .15258789 Hz
; The first 24 words are used for the initial FM generator values.
; Each of the three FM generators are initialized with 8 words
; in the following format:
; [0] ---> modulation phz increment value
; [1] ---> modulation phz accumulator
; [2] ---> modulation index slope value
; [3] ---> modulation index
; [4] ---> carrier phz increment value(.15258789 Hz increments)
; [5] ---> carrier phz accumulator
; [6] ---> carrier amplitude slope value
; [7] ---> carrier amplitude
; After the 24 words of initialization data, groups of 7 data words are
; used to define when and what parameters to change during the sounding
; of the generators. The format for the 7 data words is:
; [0] ---> When the change should occur(in 100uSec increments)
; [1] ---> new FM gen 1 modulation index slope value
; [2] ---> new FM gen 1 carrier amplitude slope value
; [3] ---> new FM gen 2 modulation index slope value
; [4] ---> new FM gen 2 carrier amplitude slope value
; [5] ---> new FM gen 3 modulation index slope value
; [6] ---> new FM gen 3 carrier amplitude slope value

The real trick is determining the frequencies and envelopes for the desired sound
affect. Fortunately the sounds used were obtained from examples found in various
documents on the WEB. The cuckoo sound was designed from a wave file of a Three
Stooge’s episode where Curly gets bonked in the head with the resulting desired
cuckoo sound!

The routine “Start_Sound()” is called to initiate a sound. It is called with a pointer to the
desired sound table.
The routine “Service_sound()” reads the sound table and obtains the next set of
parameters to give to the three FM generators.
The routine “Calc_sample(AR0)” calculates a new sample of a single FM generator
data structure pointed to by AR0.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 18

A state machine is implemented that dispatches the various sounds depending on the
current time.
;void Sound_idle_state()
;{
; if(Flags.TIME_OK){
; if(Hr_count != Prev_hr){
; Prev_hr = Hr_count;
; Sound_Vector = Sound_hr_state;
; }else{
; if(Min_count != Prev_min){
; Prev_min = Min_count;
; switch(Min_count){
; case 15:
; Sound_Vector = Sound_15_state;
; break;
; case 30:
; Sound_Vector = Sound_30_state;
; break;
; case 45:
; Sound_Vector = Sound_45_state;
; break
; default:
; break;
; }
; }
; }
; }
; if((Sec_count & BIT0){ // tick or tock every
; Sound_Vector = Sound_tick_state; // second
; else
; Sound_Vector = Sound_tock_state;
; }
;}

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 19

TICUART.ASM Module

This module converts the time of day into ASCII strings and squirts it out the UART
every second.
Two ASCII strings are made. One is used to display status information before the clock
has acquired the time data. The second one contains the actual time of day formatted
information.

The function “itoa()” converts a value from 0 to 99 into an 2 character ASCII string and
places it into the main output string.
The routines “Calc_Sec()”,“Calc_Min()”, and “Calc_Hr()” convert the time data into the
proper ASCII representation. “Calc_Hr()” has additional logic to display either local time
compensated for Daylight savings time or GMT time in either 12 or 24 hour format. The
12 hour format displays AM or PM as a suffix.

The DTR and RTS lines on the serial port are toggled at a 1 Hz rate out of phase with
each other.

TIC Clock Test Method

Several methods were employed in debugging and verifying the clock design. The
primary measurement tool was an oscilloscope. For measuring timing, digital outputs
were used such as LED ports or TNC port bits. For measuring signal data, the D/A
channel of the DSP-93 was used to output various test points. A Telulex SG-100 signal
generator was useful in evaluating the filters and detector code. For time data testing,
WWV signals were used for tweaking and evaluating the TIC1 performance.

CLOCK PERFORMANCE

The processor load was roughly measured by measuring the peak and average time it
took to service all four software modules in the main code loop. The minimum time
around the loop was 9.2 uSec. Peak processing time around the loop while receiving
and sounding, was around 95 uSec. This means the Sample_Que probably never gets
even one sample behind. The average time around the loop was about 50 uSec. This
means the processor is running about 50% of a full load at the present sample period of
100uSec. Code size takes about 4.1K of program space.

Areas for Improvement:

Acquire time could be improved by integrating analog bit values instead of the +/-1
discrete values. Determining energy thresholds would be more difficult but under
strong signals, the lock time could be reduced to a few minutes.

TIC Technical Description 1.0

Moe Wheatley, AE4JY , Oct. 1997 20

Ideas for the Future:

None. This project has already taken up too much time.(pardon the pun)

References

• Marvin E. Frerking, “Digital Signal Processing in Communication Systems”

• K. Sam Shanmugam, “Digital and Analog Communication Systems”

• Texas Instruments, “TMS320C2x Users Guide”

• Texas Instruments, “Digital Signal Processing Applications with the TMS320 Family
Theory, Algorithms, and Implementations” Vol. 2

• Nicky Hind, “Frequency Modulation Synthesis (FM)”

• John Chowning, “Frequency Modulation and some CLM examples”

• Dave Mills, “Precision Radio Clock for Station WWV/H Transmissions”

• NIST, <http://www.boulder.nist.gov/timefreq/pubs/sp432/s_wwv.htm>

